Charge 1	Charge 2	Distance	Electric Force
$\boldsymbol{q}_{\boldsymbol{1}}$	\boldsymbol{q}_{2}	\boldsymbol{d}	$\boldsymbol{F}_{\boldsymbol{e}}$
$2 q_{1}$	$3 q_{2}$	d	
$2 q_{1}$	$1 / 2 q_{2}$	d	
$2 q_{1}$	q_{2}	$2 d$	
q_{1}	$3 q_{2}$	$2 d$	
$2 q_{1}$	$2 q_{2}$	$2 d$	
$2 q_{1}$	q_{2}	$1 / 2 d$	
$1 / 2 q_{1}$	q_{2}	$1 / 2 d$	
$2 q_{1}$	$1 / 2 q_{2}$	$2 d$	
$1 / 2 q_{1}$	$1 / 2 q_{2}$	$1 / 2 d$	

31. Example: The particle A carries $1.2 \times 10^{-4} \mathrm{C}$, the particle B carries $2.4 \times 10^{-4} \mathrm{C}$, and the particle C carries 9.7×10^{-8} C. The three particles form a equilateral triangle with the measure of the side 0.45 m . What's the ratio of the repelling forces between $\mathrm{A}-\mathrm{C}$ and $\mathrm{B}-\mathrm{C}$?
32. Example: Determine the electrical force of attraction between two balloons with separate charges of $3.5 \times 10^{-8} \mathrm{C}$ and $-2.9 \times 10^{-8} \mathrm{C}$ when separated a distance of 0.65 m .
33. Exercise: Each of the two identical hot-air balloons acquires a charge of $3.2 \times 10^{-6} \mathrm{C}$ on its surface as it travels through the air. How far apart are the balloons if the electrostatic force between them is $4.5 \times 10^{-2} \mathrm{~N}$?

Application of Coulomb's Law

34. A 3-C charge and a 2-C charge attract each other with 5 N of force. How much will a 4-C charge and a 6-C charge attract each other when placed the same distance apart?
a. 5 N
b. 12 N
c. $\quad 10 \mathrm{~N}$
d. 20 N
e. 40 N
f. none of the above.
35. Two charges separated a distance of 1.0 meter exert a $6.0-\mathrm{N}$ force on each other. If the charges are pushed to a separation of 2.0 meter, the force on each charge will be
a. $\quad 0.75 \mathrm{~N}$.
b. $\quad 1.5 \mathrm{~N}$.
c. $\quad 3.0 \mathrm{~N}$.
d. $\quad 6.0 \mathrm{~N}$.
e. $\quad 12.0 \mathrm{~N}$.
f. $\quad 24.0 \mathrm{~N}$.
36. Two charged particles held close to each other are released. As they move, the force on each particle increases. Therefore, the particles have
a. opposite signs.
b. the same sign.
c. charges that cannot be determined
37. Exercise: The hydrogen atom consists of a single electron (mass $9.1 \times 10^{-31} \mathrm{~kg}$) and a proton (mass 1.7×10 ${ }^{-27} \mathrm{~kg}$) at an average separation distance of $5.3 \times 10^{-11} \mathrm{~m}$. Compare the electrical and gravitational force between the proton and the electron in a hydrogen atom.
38. Exercise: If a positive test charge is located between two charged spheres, A and B. Sphere A has a charge of +4 q and is located 0.2 meter from the test charge. Sphere B has a charge of $-2 q$ and is located 0.1 meter from the test charge. If the magnitude of the force on the test charge due to sphere A is F, what is the magnitude of the force on the test charge due to sphere B?

Test Charge

